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SUMMARY 

 
There is an increasing need for rapid and accurate detection, identification, and quantification of chemical, biological, 
and energetic hazards in many fields of interest. To meet these challenges, researchers are combining spectroscopy with 
nanoscale platforms to create technologies that offer viable and novel solutions for today’s sensing needs.  One 
technology that has gained increasing popularity to meet these needs is surface enhanced Raman scattering (SERS).  For 
ideal SERS sensing, commercially available uniform and reproducible nanoscale surface demonstrating high sensitivity 
are desirable.  If these surfaces can be modified for the selective sensing of hazard materials, an ideal sensor platform for 
dynamic in field measurements can be imagined.  In this proceedings paper, preliminary efforts towards the 
characterization and application of commercially available next generation Klarite substrates will be demonstrated and 
efforts towards selective sensing will be discussed. 
 

ABSTRACT 
 

There is an increasing need and challenge for early rapid and accurate detection, identification, and quantification of 
chemical, biological, and energetic hazards in many fields of interest (e.g., medical, environmental, industrial, and 
defense applications).  Increasingly to meet these challenges, researchers are turning interdisciplinary approaches 
combining spectroscopy with nanoscale platforms to create technologies that offer viable and novel solutions for today’s 
sensing needs.  One technology that has gained increasing popularity to meet these needs is surface enhanced Raman 
scattering (SERS).  SERS is particularly advantageous as it does not suffer from interferences from water, requires little 
to no sample preparation is robust and can be used in numerous environments, is relatively insensitive to the wavelength 
of excitation employed and produces a narrow-band spectral signature unique to the molecular vibrations of the analyte.   
 
SERS enhancements (chemical and electromagnetic) are typically observed on metalized nanoscale roughened surfaces.  
For ideal SERS sensing, commercially available uniform and reproducible nanoscale surface demonstrating high 
sensitivity are desirable.  Additionally, if these surfaces can be modified for the selective sensing of hazard materials, an 
ideal sensor platform for dynamic in field measurements can be imagined.  In this proceedings paper, preliminary efforts 
towards the characterization and application of commercially available next generation Klarite substrates will be 
demonstrated.  Additionally, efforts toward chemical modification of these substrates, through peptide recognition 
elements can be used for the targeting sensing of hazardous materials will be explored. 
 
KEYWORDS:  SERS, sensor, chemical, biological, Raman, detection, peptide, biomimetic 
 

I. INTRODUCTION 

There are many unique and exquisitely organized solutions for sensitive and selective sensing in biological systems.   
This innate biological ability to guide and assemble nanoscale components into precisely controlled and sophisticated 
structures from very basic components has motivated intense defense, industrial and academic research efforts to 
develop and harness these directed artificial methods that mimic or exploit the selective recognition capabilities and 
sensitive interactions inherently found in biological systems.   Many of these approaches have resulted in the successful 
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merging of more traditional sensing techniques (Fluorescence(1), Raman(2), Raman-based spectroscopic techniques(3-9)) in 
novel nano-scale synthetic platforms combined with biomolecular recognition capabilities, thus demonstrating viable 
and transformative solutions for today’s sensing needs.  In this proceedings paper, we discuss the development of a novel 
selective and sensitive sensor platform.   
 
One of the main challenges in the design and fabrication of a sensor platform is analyte selectivity and sensitivity.  A 
high degree of sensor selectivity can be achieved by using biological recognition elements( e.g. antibody), and thus 
fabricating a (10-14) sensor.  Biomimetic sensing entails the adaptation of biological principles, designs, selective sensitive 
materials and signal processing schemes merged with artificial sensors.  One type of biomimetic sensing recognition 
element demonstrating increased utility employs peptides as the biological recognition element.(15-19)  A peptide is a short 
(less than 50) chain of amino acids.  Generally, in sensing platforms peptides are advantageous to use as they 1) are 
stable and robust in a myriad of environments, 2) can be easily synthesized, 3) are cost and time efficient, 4) can be 
easily modified to recognize a target, 5) are well characterized and 6) have been shown to easily immobilized to various 
surface platform materials (metals, plastics, fabrics, tissue sample).  The ability to immobilize peptides to various 
platforms and targets has resulted in an upsurge in the development of (20-24) peptides constructed from a fusion of 
functional peptides.  There are many examples in the literature of fusion peptides being used in biomimetic sensors in 
many areas of research (defense, medical, hazard detection, and environmental studies).   
 
Fusion peptides have been identified following many different experimental methods.  Historically, methods for peptide 
selection include identification from natural resources and most commonly using combinatorial peptide-phage display 
libraries selected via a technique called biopanning. The power of the phage display library is in its ability to efficiently 
and rapidly identify ligands with a desired target property from a large population of colonies displaying highly diverse 
surface peptides.  Biopanning can generally be described as an affinity selection technique for choosing a peptide that 
can bind to a given target (demonstrating desired properties).  The biopanning process typically involves four main steps: 
preparation of the phage displayed peptide libraries, capture of specific phage that binds to the target, washing of low 
affinity or non specific phages from the cell surface, and then finally recovery through elution of the enriched target 
binders for the next round of selection.(25-28)  Using these types of selection techniques, it has been possible to identify 
and select several different material specific binding peptide sequences (examples include metal compounds, 
semiconductor materials, minerals, and polymers)(23) as well as particular targets (chemical(29-32), biological(16, 33, 34), or 
energetic hazards(35-39)).  The screening and selection of such phage displayed target binding peptides has attracted 
particular interest in the research areas of nanotechnology and sensor design.  Thus the power of these high affinity 
target peptide binders are increasingly being utilized as the recognition element in new sensor platform designs. 
 
With a new strategy for sensor design, there is a renewed effort to address the outstanding need and challenge for rapid, 
sensitive, accurate detection, identification, and quantification of chemical, biological, and energetic hazards in many 
fields of interest (e.g., medical, environmental, industrial, and defense applications).(6)  One spectroscopic detection 
method that is gaining significant popularity for meeting these sensitivity needs is surface enhanced Raman scattering 
(SERS).  SERS-based techniques and platforms combine traditional spectroscopy with nanotechnology.   SERS is 
particularly advantageous and an appropriate detection technique to utilize in biomimetic sensors as it does not suffer 
from interferences from water, requires little to no sample preparation, is robust and can be used in numerous 
environments, is relatively insensitive to the wavelength of excitation employed and produces a narrow-band spectral 
signature unique to the molecular vibrations of the analyte.   
 
Since the discovery of SERS in the 1970’s, it has been experimentally shown that the SERS signal enhancements are 
typically observed on metalized (typically silver or gold) nanoscale roughened surfaces.(40-42)  Although several open 
debates regarding the exact magnitude of contributions are still ongoing, the basis of the SERS mechanism is fairly well 
understood.   In the SERS literature, the two mechanisms that control the enhancement of the Raman scattering (SERS) 
are considered to be the electromagnetic fields generated at or near nanoparticle surfaces and the physical (chemical) 
adsorption of a target analyte onto a surface.(43-46)  The electromagnetic enhancement (EM) is typically deemed to be the 
stronger contribution, with an enhancement factor (as compared to spontaneous Raman) ranging from approximately 104 

to 1014,(47) while the chemical enhancement (CE) has been suggested to contribute at most 102.(48)   Because of the many 
sensing advantages of SERS-based techniques, significant research efforts (defense, industrial and academic) have been 
directed toward fabricating “better” SERS substrates for SERS-based sensor platforms.(48-57)  Some of these SERS 
platforms are fabricated from colloids(58), film over nanospheres(59-62), fiber optic bundles(3), nanoparticles,(55, 63-66) and 
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lithographically(5) produced structures.  The more sensitive substrate platforms generally have a 15% relative standard 
deviation (RSD; the measure of the reproducibility of an analysis) from substrate-to-substrate and SERS signal 
enhancements of 7 to 8 orders of magnitude.(60, 61)  Consequently, many researchers in academia, industry, and 
government have focused concerted efforts toward increasing the signal enhancement ability, reproducibility, and mass 
production manufacturing of substrates to increase the utility of this technique.(5, 67)  For the Army and first responders, 
such a substrate platform with increased sensitivity and reliability would be very advantageous for the detection and 
identification of unknowns.(68, 69) 
 
Significant research efforts have also been concentrated on better directing the optimization of the substrate surface from 
which the SERS enhancement occurs.(5, 70-73)  Based in part on experimental and as well as theoretical efforts, the 
directed fabrication of SERS platforms has focused on modifying the feature size(74-76), spacing between objects, 
geometry and shape of structures(77-79), identity and incorporation of metals on the surface(80), feature height, and the 
character of the foundation layer (59, 81-83) on which the architecture is fabricated.(69, 84, 85)  There are numerous examples 
in the literature detailing how variation in some of these parameters in some cases can result in very dramatic changes to 
the overall SERS enhancing capabilities of the substrate surface.  Rigorous efforts continue to focus on developing an 
understanding about how these parameters can synergistically work together to result in a highly reproducible and 
sensitive SERS substrate.  As focus continues on improving the overall sensing capabilities of the SERS surface, 
congruently research continues to push towards the development of a uniform reproducible mass produced platform 
necessary to facilitate widespread incorporation of SERS in viable biomimetic sensing platforms.   
 
Some success fabricating both spectrally and physically reproducible SERS substrates has been demonstrated with 
commercially available standard Klarite™ substrates (Renishaw Diagnostics.).(4, 71, 86-88)  These substrates were 
developed using Si-based semiconductor fabrication techniques.(4)  Klarite substrates are fabricated using a well defined 
silicon fabrication technique in which a silicon diode mask is defined by optical lithography, and then potassium 
hydroxide (KOH) surface etched.  The process results in an array of highly reproducible inverted pyramid features.(4)  
These array pyramids are reported to have “hot spots” or “trapped plasmons” located inside the wells.(4)  These substrates 
have been previously characterized.(89) Atomic force microscopy (AFM) images have demonstrated that the inverted 
pyramids features are about 1.47 um in width and 1 um in depth.  These substrates have plasmon absorbance bands 
located at 577 nm and 749 nm, thus demonstrating the usefulness of this substrate for a range of excitation sources.  
Additionally, due to the fabrication process used, under ideal conditions these substrates have demonstrated typical 
RSDs ranging from 10-15% under drop and dry conditions.    While these standard Klarite substrates do demonstrate a 
high degree of substrate reproducibility and very low substrate background (SERS signal and surface morphology), for 
many applications to real-world situations increased analyte sensitivity is still necessary.   Recently new prototype 
Klarite based substrates have been fabricated by Renishaw Diagnostics with the intent to expand substrate sensing 
capabilities.  The morphologies of these substrates dramatically differ in overall shape, pitch and spacing as compared to 
the standard Klarite substrate resulting in very interesting sensing capabilities.(90, 91)  

In this proceedings paper, preliminary efforts functionalizing commercially available SERS substrates for directed 
biomimetic hazard sensing will be discussed and demonstrated.  These chemical modification methods are achieved 
using fusion peptide recognition elements for the targeting sensing of hazardous materials such as the energetic sample 
TNT. By demonstrating these preliminary results, the potential of these SERS substrates for future incorporation in 
fielded Raman systems for the selective sensing of hazard materials can be imagined. 
 

II.  EXPERIMENTAL 

Peptide Samples. 
Potential peptide recognition elements were selected following a comprehensive literature search.  Peptide materials 
were commercially purchased from RS Synthesis (Louisville, KY 40270), Genscript (Piscataway, NJ 08854) or Peptide 
2.0 (Chantilly, VA 20153) and used without additional modification (> 85% purity).  Fusion peptides were created with 
a glycine-glycine-glycine (GGG) spacer between the material binder and the target recognition element.  The material 
binder, target recognition sequence, and naming systems used are listed in Table 1.  Upon receipt, all samples were 
stored at -20˚C or below and kept dry.  Utilizing the GenScript Peptide Property Calculator, peptides were determined to 
have a neutral charge, and were suspended in a water only solution.  Concentrations of peptide used are listed in the text.  
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Instrumentation and Data Analysis.  
Scanning electron microscope (SEM) images was obtained using a FEI environmental SEM (Quanta 200 FEG).  
 
A Renishaw inVia Reflex Raman microscope was used for SERS and Raman spectra collection.  Spectra were collected 
using the NIR 785 nm laser.  The laser light was focused onto the sample using a 20X objective, over a range og 100-
3200 cm-1, exposures were 10 seconds in length, and 3 accumulations were collected per spot.  Approximately 7 mW of 
power irradiated the surface of the substrate.  A total of 10 spectra were collected from each spot on the substrate.  
Samples were positioned using a motorized XYZ translational stage internal to the microscope.  Spectra were collected, 
and the instrument was run using Wire 3.2 software operating on a dedicated computer.   
 
Data analysis was achieved using IgorPro 6.0 software (Wavemetrics).(90) 
 

III.  RESULTS AND DISCUSSION 

Gold binding capabilities of peptide 
To assess the utility of the fusion peptides, it is critical to first evaluate the gold binding capabilities of the peptide 
recognition elements.  To do this, the dry peptide was resuspended in a water and a solution of 0.8mg/mL of peptide was 
made.  The solution was then vortexed for 2 minutes to assure complete mixing, and then a 4uL aliquot of analyte 
solution was deposited both on the active and non active areas of the Klarite substrate.  The sample was then allowed to 
incubate covered in the refrigerator for 20 minutes to assure ample time for binding.  The SERS substrate surface was 
then repeatably washed with a 3mL aliquot of water 4 times to remove any incompletly bound peptide, and then 
suspended in a water solution to prevent the peptide from drying.  Using the Renishaw InVia microscope system both the 
nonactive and active areas of the SERS substrate were interrogated.   

 

Figure 2. Example spectra from Au binder (A) and Au binder + TNT binder (B).  Spectra are shown on active and non active areas of 
SERS substrate and after multiple washes to remove any unbound sample.   
 
An example of a gold binding peptide commonly encountered in the literature has the sequence AYSSGAPPMPPF.  
Since this peptide has been well characterized and demonstrated to bind effectively to gold, we wanted to complete a 
proof of principle study to assure binding and detection of a SERS.  In Figure 2A, the SERS and Raman response are 
shown.  In Figure 2A, SERS bands are located at 641 cm-1, 721 cm-1, 1001.8 cm-1, 1031 cm-1, 1204 cm-1 and 1443 cm-1.  
For analysis, the 1001.8 cm-1 band was analyzed to determine a signal-to-noise (SNR) ratio.  For Figure 2A, the SERS 
SNR is 30.54 and the Raman SNR is 0.  Thus indicating that the peptide has successfully bound to the substrate surface 
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and does exhibit a distinguishable SERS spectrum.  Repeating these studies, it was possible to detect the Au binder on 
the surface after multiple washings deposited at a concentration as low as millimolar levels.   

Recognition elements- TNT binder 
For the past decade, significant defense, industry and academic resources and research efforts have focused on the 
detection and recognition of hazardous materials.  Efforts have been centered on such tasks as securing public locations 
and transportation, maintaining the integrity of checkpoint stations at military sites, and assuring public safety in food 
chain supplies and the environment.  In many of these scenarios, the hazardous material of interest can be energetic in 
nature.  In particular, the detection of high explosives such as 2,4,6-trinitrotoluene (TNT)  and their byproducts like 
dinitrotoluene (DNT) have garnered significant attention because of its proliferations mainly due to availability and ease 
of use.  Increasingly to detect and identity this threat, research agencies are focusing on new innovative bio-inspired 
technologies for possible solutions.  

There are several examples of bio-inspired technologies being used for the detection of explosive materials.  In the past 
decade there have been several example publications that have discussed using various peptides as a capture mechanism 
for TNT and TNT byproducts.  Some examples in the literature that have been highlighted, include an article published 
in 1999 by Danty et.al.(92), in which a binding protein found in an olfactory mechanism of the honeybee was determined 
to be specific for TNT. The olfactory peptide sequence is WVFI.  In an article published in 2002 by Goldman et. al.(93), 
phage displayed peptides were selected for the detection of TNT.  From this paper, the sequence for TNT peptide 
detection was determined to be WHRTPSTLWGVI.  In a 2008 article by Jaworski et al.(94), evolutionary screening of 
peptides for the selective detection of explosives was conducted.  From this screening process, the following peptide 
sequences specific for TNT and DNT selectivity were determined, WHWQRLMPVSI and HPNFSKYILHQR.   

 

 

Figure3. Example spectra from (A) A3 binding domain +-GGG- ASP1 + TNT, (B) TNT, and (C) A3binding domain –GGG-ASP1 (no 
TNT).  Note several common bands found in (A) are clearly in (B) and (C).    

To determine the effectiveness of these peptides for capturing TNT on the commercial SERS substrate, peptide 
sequences consisting of a gold binding motif, a spacer sequence and the previously mentioned TNT binding peptides 
were prepared.  In this proceedings paper, we will present results from one combination of this fusion peptide.  These 
fusion peptides were immobilized on the Klarite substrate surface and washed several times to insure monolayer 
coverage.  The peptide containing SERS substrate was then exposed to a high concentration (3.67 x 10-2 M) TNT in a 
water/alcohol/some residual acetonitrile solution.  The TNT solution was in a mostly water solution to prevent any 
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potential damage to the peptide sequence from acetonitrile.  A high concentration of TNT was originally selected for 
these proof-of-principle demonstrations.  The TNT solution sat on the SERS substrate surface for 20 minutes to ensure 
complete binding between the peptide and TNT.  The surface was next washed with 2 mL of deionized water to remove 
any excess and unbound TNT from the surface.  See Figure 3 for example SERS spectra from the peptides bound to the 
surface, and with the addition of TNT. In Figure 3, (C) has the characteristic peptide band located at 1001.8cm-1, while 
(B) TNT exhibits SERS bands located at 793 cm-1, 823 cm-1, and 1356 cm-1. In Figure 3A, the A3binding domain-GGG-
ASP1 sequence with TNT added demonstrates SERS bands located at 793 cm-1, 823 cm-1, 1001.8cm-1 and 1356 cm-1, 
thus demonstrating that the peptide remained bound and captured TNT onto the sensing surface.   

After a demonstration of preliminary sensing with the targeted peptide sequence, it was necessary to determine if the 
gold binding motif was necessary for immobilizing the peptide on the surface.  For these experiments, the Au binding 
capabilities of the A3 binding domain as compared to a non material specific binding domain were assessed.  Peptides of 
the sequence A3 binding domain-GGG-ASP1 and Graphene binding –GGG-ASP1 were immobilized onto different 
Klarite substrates overnight.  After immobilization, the surface was washed with 2 mL of water, and 5ul of TNT was 
added to the surface for 1 hour.  Following TNT exposure, the surface was washed with 2 mL of water and SERS 
measurements were collected.  In Figure 4, examples of results collected are shown.  In Figure 4A, bands common to 
TNT are clearly shown.  In Figure 4B, there are some minor TNT bands shown, however the overall signal analyzing the 
TNT 1356 cm-1 band is determined to be almost 20X greater.  From this Figure, it can be clearly concluded that the A3 
binding domain is necessary for peptide immobilization onto the Klarite surface.   

 

Figure 4. Example spectra TNT exposed to (A) A3 binding domain +-GGG- ASP1 and the (B) Graphene binder–GGG-ASP1.  From 
these results it can be concluded that A3 binding domain is necessary for immobilizing the peptide onto the gold Klarite surface.   

After preliminary efforts to bind the A3-GGG-ASP1 binding motif to the Klarite surface and detect TNT were 
demonstrated, and it was conclusively shown that the A3 binding domain aids in peptide immobilization the specificity 
of the peptide for TNT detection was preliminarily assessed.  A proof-of-principle experiment was conducted to 
determine if the peptide binder caused preferential binding of TNT to the surface as compared to non-specific binding.  
For these experiments, the peptides A3binding domain-GGG-ASP1 (TNT binder) and A3 binding domain-GGG-
Graphene binder (non specific to TNT) were immobilized on the Klarite substrate surface overnight, and washed with 2 
mL of water to remove any unbound peptide.   The SERS surface was then exposed to 5 uL of TNT for one hour.  
Following TNT exposure, the surface was washed with 2 mL of water and SERS measurements were collected.  In 
Figure 5, the results for this binding study are shown.  In Figure 5A the A3 binding domain-GGG-ASP1 peptide exposed 
to TNT is shown.  In this figure the peaks observed are located at 793 cm-1, 823 cm-1, 1001.8cm-1 and 1356 cm-1, thus 
demonstrating that the peptide remained bound and captured TNT onto the sensing surface.  In Figure 5B, an example 
spectrum from the non specific peptide exposed to TNT is shown.  In this figure, it can be clearly seen that the peptide 
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band early discussed at 1001.8cm-1 is clearly shown, however no SERS bands for TNT are observed.  Thus it can be seen 
that the ASP1 binding domain is necessary for TNT binding to the peptide and being detected.     

 

Figure 5. Example spectra TNT exposed to (A) A3 binding domain +-GGG- ASP1 and the (B) A3binding domain –GGG-Graphene 
binder.  From these results it can be concluded that TNT is preferentially bound to the ASP1 containing peptide.   

IV.  CONCLUSIONS 

In conclusion, we have shown a preliminary proof-of –principle demonstration that using specially targeted fusion 
peptides it is possible to selectively bind hazard materials (like the energetic TNT) to a SERS Klarite sensing surface.  
Additional studies need to be conducted to determine the optimized conditions needed for higher sensitivity detection of 
energetic and other Army relevant hazard materials.  We also plan to transition these biological sensing schematics onto 
next generation Klarite sensing.   
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